博客
关于我
714. 买卖股票的最佳时机含手续费
阅读量:789 次
发布时间:2019-03-25

本文共 1180 字,大约阅读时间需要 3 分钟。

在股票交易问题中,使用动态规划(DP)是一种有效的方法来找到最大利润。以下是一个优化后的解决方案,模仿了技术人员的写作风格,避免使用AI特有的表达方式。问题描述:我们需要计算从买入股票到卖出的过程中,扣除手续费后的最大利润。DP方法中,dp[i][0]表示第i天不持有股票的最大收益,dp[i][1]表示第i天持有股票的最大收益。通过这个状态机,我们可以跟踪每一天的交易状态。解决方案:因为买入时需要支付手续费,所以特殊处理。到达当天不持有股票的状态时,只能是前一天持有并且卖出,或者前一天不持有。此外,持有股票的时候,可能是今天从不持有变为持有,或者是从持有延续。初始化:dp[0][0] = 0:第0天不持有股票的收益为0。dp[0][1] = -fee - prices[0]:第0天持有股票的收益为第一天购入价格减去手续费。递推关系:当天不持有股票的状态:dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])当天持有股票的状态:dp[i][1] = max(dp[i-1][1], dp[i-1][0] - fee - prices[i])最终结果:返回dp[prices.size()-1][0],即最后一天不持有的最大收益。实现代码:#include 
using namespace std;class Solution {public: int maxProfit(vector
& prices, int fee) { vector
> dp(prices.size(), vector
(2)); dp[0][0] = 0; dp[0][1] = -fee - prices[0]; for(int i = 1; i < prices.size(); ++i) { dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]); dp[i][1] = max(dp[i-1][1], dp[i-1][0] - fee - prices[i]); } return dp[prices.size()-1][0]; }};

这段代码通过动态规划计算了股票交易的最大利润。每一步根据前一天的状态决定当前天的操作,从而最大化利润。对于每一天,计算两种状态的利润:持有和不持有,并选择最优解。

这个方法的时间复杂度为O(n),空间复杂度为O(n),适合处理较长的股票价格序列。

转载地址:http://vvjuk.baihongyu.com/

你可能感兴趣的文章
MySQL Cluster与MGR集群实战
查看>>
multipart/form-data与application/octet-stream的区别、application/x-www-form-urlencoded
查看>>
mysql cmake 报错,MySQL云服务器应用及cmake报错解决办法
查看>>
Multiple websites on single instance of IIS
查看>>
mysql CONCAT()函数拼接有NULL
查看>>
multiprocessing.Manager 嵌套共享对象不适用于队列
查看>>
multiprocessing.pool.map 和带有两个参数的函数
查看>>
MYSQL CONCAT函数
查看>>
multiprocessing.Pool:map_async 和 imap 有什么区别?
查看>>
MySQL Connector/Net 句柄泄露
查看>>
multiprocessor(中)
查看>>
mysql CPU使用率过高的一次处理经历
查看>>
Multisim中555定时器使用技巧
查看>>
MySQL CRUD 数据表基础操作实战
查看>>
multisim变压器反馈式_穿过隔离栅供电:认识隔离式直流/ 直流偏置电源
查看>>
mysql csv import meets charset
查看>>
multivariate_normal TypeError: ufunc ‘add‘ output (typecode ‘O‘) could not be coerced to provided……
查看>>
MySQL DBA 数据库优化策略
查看>>
multi_index_container
查看>>
mutiplemap 总结
查看>>