博客
关于我
714. 买卖股票的最佳时机含手续费
阅读量:789 次
发布时间:2019-03-25

本文共 1180 字,大约阅读时间需要 3 分钟。

在股票交易问题中,使用动态规划(DP)是一种有效的方法来找到最大利润。以下是一个优化后的解决方案,模仿了技术人员的写作风格,避免使用AI特有的表达方式。问题描述:我们需要计算从买入股票到卖出的过程中,扣除手续费后的最大利润。DP方法中,dp[i][0]表示第i天不持有股票的最大收益,dp[i][1]表示第i天持有股票的最大收益。通过这个状态机,我们可以跟踪每一天的交易状态。解决方案:因为买入时需要支付手续费,所以特殊处理。到达当天不持有股票的状态时,只能是前一天持有并且卖出,或者前一天不持有。此外,持有股票的时候,可能是今天从不持有变为持有,或者是从持有延续。初始化:dp[0][0] = 0:第0天不持有股票的收益为0。dp[0][1] = -fee - prices[0]:第0天持有股票的收益为第一天购入价格减去手续费。递推关系:当天不持有股票的状态:dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])当天持有股票的状态:dp[i][1] = max(dp[i-1][1], dp[i-1][0] - fee - prices[i])最终结果:返回dp[prices.size()-1][0],即最后一天不持有的最大收益。实现代码:#include 
using namespace std;class Solution {public: int maxProfit(vector
& prices, int fee) { vector
> dp(prices.size(), vector
(2)); dp[0][0] = 0; dp[0][1] = -fee - prices[0]; for(int i = 1; i < prices.size(); ++i) { dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]); dp[i][1] = max(dp[i-1][1], dp[i-1][0] - fee - prices[i]); } return dp[prices.size()-1][0]; }};

这段代码通过动态规划计算了股票交易的最大利润。每一步根据前一天的状态决定当前天的操作,从而最大化利润。对于每一天,计算两种状态的利润:持有和不持有,并选择最优解。

这个方法的时间复杂度为O(n),空间复杂度为O(n),适合处理较长的股票价格序列。

转载地址:http://vvjuk.baihongyu.com/

你可能感兴趣的文章
MySQL中地理位置数据扩展geometry的使用心得
查看>>
Mysql中存储引擎简介、修改、查询、选择
查看>>
Mysql中存储过程、存储函数、自定义函数、变量、流程控制语句、光标/游标、定义条件和处理程序的使用示例
查看>>
mysql中实现rownum,对结果进行排序
查看>>
mysql中对于数据库的基本操作
查看>>
Mysql中常用函数的使用示例
查看>>
MySql中怎样使用case-when实现判断查询结果返回
查看>>
Mysql中怎样使用update更新某列的数据减去指定值
查看>>
Mysql中怎样设置指定ip远程访问连接
查看>>
mysql中数据表的基本操作很难嘛,由这个实验来带你从头走一遍
查看>>
Mysql中文乱码问题完美解决方案
查看>>
mysql中的 +号 和 CONCAT(str1,str2,...)
查看>>
Mysql中的 IFNULL 函数的详解
查看>>
mysql中的collate关键字是什么意思?
查看>>
MySql中的concat()相关函数
查看>>
mysql中的concat函数,concat_ws函数,concat_group函数之间的区别
查看>>
MySQL中的count函数
查看>>
MySQL中的DB、DBMS、SQL
查看>>
MySQL中的DECIMAL类型:MYSQL_TYPE_DECIMAL与MYSQL_TYPE_NEWDECIMAL详解
查看>>
MySQL中的GROUP_CONCAT()函数详解与实战应用
查看>>